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Abstract 

 
 This article details a multigrid algorithm that is suitable for least squares wave-

front reconstruction of Shack-Hartmann and shearing interferometer wave-front sensors. 

The algorithm detailed in this article is shown to scale with the number of sub-apertures 

in the same fashion as fast Fourier transform techniques, making it suitable for use in 

applications requiring a large number of sub-apertures and high Strehl ratio systems such 

as for high spatial frequency characterization of high density plasmas, optics metrology 

and multi-conjugate and extreme adaptive optics systems.  
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I. Introduction 

Electron density measurements in high-density plasmas have been obtained using 

a variety of techniques, including interferometry,1 moiré deflectometry,2 grid image 

refractometry3 and plasma emission spectroscopy.4 Each of these techniques have 

limitations associated with their use. Both interferometry and moiré deflectometry 

measurements suffer from ambiguity when the density gradients become large enough 

such that the interferogram undergoes indiscernible jumps between fringes. In addition, 

moiré deflectometry measures the gradient of the density profile transverse to the fringe 

pattern and, therefore, requires two orthogonal measurements to determine the two-

dimensional density profile. Plasma emission spectroscopy requires accurate knowledge 

of both the temperature and density profiles along the chordal measurement through the 

plasma and sophisticated atomic physics codes, as well as carefully calibrated 

instruments. 

Recently, the use of Shack-Hartmann wave-front sensors to measure the phase of 

an aberrated beam passing through a plasma has been proposed.5,6 Shack-Hartmann 

wave-front sensors have primarily been used to measure the wave-front of light after 

propagation through the atmosphere,7,8 for optical metrology9 and to look at the 

propagation characteristics of lasers10. Shack-Hartmann wave-front sensors measure the 

local wave-front tilt perpendicular to the probe laser. As such, it provides 2-D orthogonal 

information unlike moiré deflectometry, which only measures parameters in the direction 

transverse to the fringe pattern. All of the light that passes through the plasma can be 

collected by the lenslet array giving it a higher optical efficiency than either moiré 

deflectometry, which utilizes two Ronchi rulings to produce an interference pattern, or 
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interferometry, which utilizes beamsplitters to form and recombine the different paths of 

the interferometer. Shack-Hartmann sensors can easily operate with broadband or low 

coherence light, where interferometric measurements are more difficult. In addition, a 

density measurement based on a Shack-Hartmann sensor requires fewer optical 

components than are required in moiré deflectometry and interferometry and the 

aberrations present in the optical system can be accounted for, allowing less expensive 

optics to be used. 

This article examines the problem of least-squares wave-front reconstruction 

given a measurement of the phase gradient such as obtained from Shack-Hartmann and 

shear interferometer wave-front sensors. In particular, an algorithm based on multigrid 

techniques is developed to solve the partial differential equations that result from least-

squares wave-front reconstruction from measurements obtained using Shack-Hartmann 

wave-front sensors and shearing interferometers. The multigrid technique is reviewed in 

the next section. The third section shows results using the algorithms and provides a 

summary of the work presented. The equations representing the least-squares wave-front 

reconstruction are derived in the appendix. 

 

II. Review of Multigrid Techniques 

 Iterative techniques such as Gauss elimination, Gauss-Seidel relaxation and 

simultaneous over-relaxation are very efficient at quickly solving for high spatial 

frequencies, however, they are quite slow in obtaining low spatial frequencies and require 

many iterations to do so. The multigrid approach solves a particular problem on multiple 

grids, each with a different scale, transferring the residual error between the grids. This 
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allows low spatial frequencies on the finest grid to be transformed into high spatial 

frequencies on the coarsest grid where they can be solved quickly using the above 

mentioned techniques such as Gauss-Seidel relaxation. These “high spatial frequencies” 

on the coarsest grid are then transformed back into low spatial frequencies on the finest 

grid. This allows multigrid techniques to solve problems very quickly for both the low 

and high spatial frequencies. The algorithm detailed below was implemented in the 

Interactive Data Language (IDL) programming language and as shown below solves the 

least-squares phase reconstruction problem on an NxN grid in O(N2logN), which follows 

the same scaling as fast Fourier transform techniques.11,12,13,14 The multigrid techniques, 

however, can solve any size grid without incurring a speed penalty for non-power of 2 

grids such as occurs with Fourier transform techniques. Multigrid techniques have been 

implemented as O(N) solvers, making them the optimal technique.15 In addition, 

multigrid algorithms can be parallelized easily and efficiently. 

In the multigrid technique, the “residual error” of the equations is transferred to 

the coarser grid via a restriction operator described below. For the linear problem AΦ = 

ρ, the residual equation is defined as Ae = ρ−Αφ, where φ is an approximation to Φ and e 

is the unknown error Φ−φ. Relaxation on AΦ = ρ, with initial guess of φ is equivalent to 

relaxing on Ae = r with initial guess e = 0, where r is residual error r = ρ -Aφ.16,17  

 The process of transferring from the fine grid to the coarse grid is accomplished 

with a restriction operator. The concept of restriction in one dimension is shown in Fig. 1. 

The fine grid is transferred to the coarse grid with the restriction operator and sampled at 

every other point, resulting in a factor of two reduction in the grid dimensions.In this case 

the values at points on the coarse grid are made up of half of the value on the 
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corresponding fine grid plus one quarter of the values on either side. In two dimensions, 

the restriction operator takes the form16,17 
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where the variable f denotes points on the fine grid and the variable c denotes points on 

the coarse grid. 

 The process of transferring from the coarse grid to the fine grid is accomplished 

with a prolongation operator. The concept of prolongation or interpolation in one 

dimension is shown in Fig. 2. Prolongation allows for a transfer of the solution from the 

coarse grid to the fine grid. In this case the values at points on the coarse grid map, 

corresponding to points on the fine grid, remain unchanged as they are mapped to the fine 

grid. The values at fine-grid points that do not correspond to the coarse grid nodes are the 

averages of their coarse-grid neighbors. In two dimensions, the prolongation process is 

simply bilinear interpolation16,17 
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where again the variable f denotes points on the fine grid and the variable c denotes 

points on the coarse grid. 

 The basic algorithm for the multigrid technique is known as the V-cycle.16,17 The 

V-cycle relaxes the original equation on the finest grid and then restricts the residual to 

the grid that is a factor of two smaller. This process continues until the coarsest grid is 

reached at which time the equation goes through the prolongation operation until the 
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finest grid is reached again. The V-cycle process is shown pictorially in Fig. 3 and the 

flowchart17 of the algorithm is displayed in Fig. 4 for going from the finest grid to the 

coarsest grid and back. 

 The full multigrid cycle uses the V-cycle described above to obtain better results 

than using the V-cycle alone. The full multigrid cycle is shown pictorially in Fig. 5 and 

the flowchart17 for the algorithm is given in Fig. 6. In the full multigrid cycle, the original 

equation is relaxed on the finest grid and the residual is restricted to the grid a factor of 

two smaller. This process is continued until the coarsest grid is reached. The prolongation 

operator is then used to bring the process to the grid, which is a factor of two finer than 

the coarsest grid. The V-cycle process is then called iteratively, each time the bringing 

the process back to a grid, which is a factor of two finer than the starting grid until the 

finest grid is reached. 

 The boundary conditions for the phase reconstruction problem are derived via a 

mirror reflection of the phase, Φ, as depicted in Fig. 7.14 The phase is defined on the 

interval 0 < i < p-1 and 0 < j < q-1. The phase is reflected about the line i=p-1 and about 

j=q-1, which creates a periodic function in which the boundary conditions for the phase 

derivative are readily derived. The phase function for the lower left-hand corner is shown 

in Fig. 8, which allows for easy identification of the following boundary conditions:14 
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The phase is still solved on the original grid 0 < i < p-1 and 0 < j < q-1. The mirror 

reflection is simply used to provide the appropriate boundary conditions, which must be 

imposed after each restriction operation to ensure that the correct solution is reached. 

 

III. Reconstruction Results 

The wave-front reconstruction algorithm described in the previous section was 

implemented on the equations derived in the appendix for the case of the shearing 

interferometer, Eq. A5 in the Hudgin geometry, and for the Shack-Hartmann sensor, Eq. 

A9 in the Fried geometry. The phase profile was chosen to resemble a plasma produced 

by a high intensity laser interaction with a solid target. The phase profile was therefore 

primarily a linear phase ramp18 with a Kolmogorov turbulence profile,19 as shown in Fig. 

8. The phase gradients are obtained by taking the appropriate derivatives of the phase 

profile for both the Hudgin and Fried geometries. The Hudgin phase gradients are defined 

as φxi,j = Φi,j-Φi-1,j for the x slope and φyi,j = Φi,j-Φi,j-1 for the y slope, where φxi,j and φyi,j 

represent partial derivatives of the phases in the x and y directions, respectively. The 

Fried phase gradients are defined as φxi,j=(Φi+1/2,j+1/2+Φi+1/2,j-1/2-Φi-1/2,j+1/2-Φi-1/2,j-1/2) and 

φyi,j=(Φi+1/2,j+1/2+Φi-1/2,j+1/2-Φi+1/2,j-1/2-Φi-1/2,j-1/2), where φxi,j and φyi,j represent partial 

derivatives of the phases in the center of the sub-aperture in the x and y directions, 

respectively. 

The initial phase primarily consists of a linear phase ramp with approximately 10 

waves peak to valley. The appropriate gradients, as detailed above, were taken and then 

the original phase was reconstructed using the multigrid algorithm detailed in this article. 

The reconstruction results are shown in Fig. 9. In this case the initial phase is shown in 
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Fig. 9a, along with the difference between the reconstructed phase and the initial phase 

for the Hudgin geometry, Fig. 9 b, and the Fried geometry, Fig. 9 c. The reconstructed 

phases shown in Fig 9b and 9c resulted from two cycles of the multigrid algorithm. The 

variance as a function of full multigrid cycles for the two separate geometries is then 

shown in Fig. 10. The variance is defined as the average value of the square of the 

difference between the reconstructed phase and the original phase. The variance for the 

Hudgin geometry is shown in Fig. 10 as the solid black line and the variance for the Fried 

geometry is shown in Fig. 10 as the solid gray line. This figure shows that the multigrid 

algorithm very quickly converges to the correct solution. By the second full multigrid 

cycle, the Hudgin geometry produced a variance of less than 0.001 rad2 and the Fried 

geometry had a variance of less than 0.013 rad2. 

The algorithm solves the least-squares phase reconstruction problem on an NxN 

grid in O(N2logN), which follows the same scaling law as Fourier transform techniques. 

The scaling with the number of sub-apertures along a given side, N, ranging from 16 to 

512 is shown in Fig. 11. In Fig. 11, the circles represent the actual run time for a given 

number of sub-apertures along a side and the black line represents the least-squares fit of 

an N2logN function. The multigrid algorithm, however, can solve any size grid without 

incurring a speed penalty for non-power of 2 grids such as occurs with Fourier transform 

techniques. This algorithm can also be readily adapted to a weighted scheme where sub-

apertures with poor signal to noise ratio can be masked out during reconstruction to 

improve the results. This can occur with coherent sources, partially illuminated sub-

apertures and also for atmospheric propagation when scintillation effects can become 

dominant. 
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The multigrid algorithm presented above is applicable to phase gradient detecting 

wave-front sensors, which include shearing interferometers, moiré deflectometry and 

Shack-Hartmann sensors. The particular multigrid algorithm presented in this article was 

shown above to have the same scaling with sub-apertures as previous Fourier transform 

techniques and the technique was demonstrated to converge quickly. Two full multigrid 

cycles resulted in a residual variance of less than 0.001 rad2 for the Hudgin geometry and 

less than 0.013 rad2 for the Fried geometry from an initial phase profile of greater than 60 

radians peak to valley. This favorable scaling with actuator number makes this technique 

attractive for applications requiring a large number of sub-apertures such as high spatial 

frequency characterization of high density plasmas, optics metrology and multi-conjugate 

and extreme adaptive optics systems. 
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Appendix A Review of the Equations Governing Least-Squares 

Phase Reconstruction 

 In both shearing interferometers and Shack-Hartmann sensors the slopes of the 

wave-front are detected across the aperture of the system. From these phase slope 

measurements, the wave-front incident upon the aperture can be reconstructed. One 

technique for reconstruction is the method of least-squares wave-front reconstruction. 

The object of this technique is to minimize the difference between the derivative of the 

reconstructed phase and the measured phase derivative at each of the points in the 

aperture in the least-squares sense. That implies the minimization of the equation20 
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where Φ represents the reconstructed phase and xψ ∂∂ and yψ ∂∂ represents the measured 

x and y phase derivatives, respectively. The minimization of Eq. A1 is dependent upon 

the geometry from which the phase derivatives are measured as detailed below. 

The two most common geometries used in phase reconstruction, the Hudgin21 and 

Fried20 geometries, are shown in Figure A1. The Hudgin geometry, shown in Figure A.1, 

is most commonly used for shearing interferometers or for moiré deflectometry, but has 

also been applied to Shack-Hartmann wave-front sensors. This geometry measures both 

the phase and the phase derivatives using the same grid. The derivative of the phase is a 

simple finite difference approximation expressed as φxi,j = Φi,j-Φi-1,j for the x slope and 

φyi,j = Φi,j-Φi,j-1 for the y slope, where φxi,j and φyi,j represent partial derivatives of the 

phases in the x and y directions, respectively. The minimization of Eq. A1 is achieved by 
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taking a derivative of the residual error, ε2, with respect to the reconstructed phase and 

setting it to zero. The phases in the separate sub-apertures are assumed to be independent 

from one another. When these phase derivatives are placed in Eq. A1 above, the 

minimization of Eq. A1 takes the form 
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Because of the assumption of independence, there is only a contribution from the 

derivatives when the two phases are from the same sub-aperture. This can be expressed in 

terms of delta functions, allowing Eq. A2 to be rewritten as 
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By multiplying the delta functions through the equation after replacing the phase 

derivatives with their finite difference approximation, the following equation is arrived at 

for phase reconstruction in the Hudgin geometry 
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This simply represents the Poisson equation, s2Φ = ρ, with ρ equal to the divergence of 

the measured phase derivatives. The equivalent Gauss-Seidel iteration, used as the 

relaxation method in the multigrid algorithm for the Hudgin geometry, is 

1qp,
y
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y
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x
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where ψx and ψy represent the measured x and y phase derivative measurements, 

respectively. 

The Fried geometry20, also shown in Figure A1, is commonly used for Shack-

Hartmann wave-front sensors. This geometry measures the phase and the phase 

derivatives on grids that are displaced relative to one another as shown in Figure A1. The 

derivative of the phase, Φ, in the center of a sub-aperture is dependent on the phase at the 

four corners of the sub-aperture. A finite difference approximation to the derivative can 

be expressed as φxi,j=(Φi+1/2,j+1/2+Φi+1/2,j-1/2-Φi-1/2,j+1/2-Φi-1/2,j-1/2) and φyi,j=(Φi+1/2,j+1/2+Φi-

1/2,j+1/2-Φi+1/2,j-1/2-Φi-1/2,j-1/2), where φxi,j and φyi,j represent derivatives of the phases in the 

center of the sub-aperture in the x and y directions, respectively. The minimization of Eq. 

A1 is again achieved by taking a derivative of the residual error, ε2, with respect to the 

reconstructed phase after the phase derivative expressions for the Fried geometry have 

been inserted into Eq. A1. The minimization then takes the form 



 

13 















Φ∂

Φ∂
−

Φ∂

Φ∂
−

Φ∂

Φ∂
+

Φ∂

Φ∂















∂
∂

−
∂
Φ∂

+















Φ∂

Φ∂
−

Φ∂

Φ∂
−

Φ∂

Φ∂
+

Φ∂

Φ∂

∑ 







∂
∂

−
∂
Φ∂

==

Φ∂

∂

−−−++−++

−−+−−+++

qpqpqpqp

qpqpqpqp

qp

jijijiji

jijijiji

,,,,2
1

*
ji,y

ψ

ji,y

,,,,2
1

*
ji,x

ψ
ji,x

20

,

ε

21,2121,2121,2121,21

21,2121,2121,2121,21

ji,

2

 (A6 

Again because of the assumption of independence of the different sub-aperture phases, 

there is only a contribution from the derivatives when the two phases correspond to the 

same location. This can be expressed in terms of delta functions, allowing Eq. A6 to be 

written as 
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where ψx and ψy represent the measured x and y phase derivative measurements, 

respectively. Multiplying the delta functions through Eq. A7, the following equation is 
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arrived at for phase reconstruction in the Fried geometry when both the phase being 

reconstructed and the measured phase derivatives are placed on a common grid 
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Least-squares wave-front reconstruction in the Fried geometry yields a slightly more 

complicated partial differential equation than the Poisson equation obtained in the 

Hudgin geometry. The Gauss-Seidel iteration used as the relaxation method in the 

multigrid algorithm for the Fried geometry, is20 
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where ψx and ψy represent the x and y phase derivative measurements on the displaced 

grid, respectively. 
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FIGURE CAPTIONS 

 
Figure 1 Pictorial representation of the restriction operation in the multigrid technique. 

 

Figure 2 Pictorial representation of the prolongation operation in the multigrid technique. 

 

Figure 3 Graphical depiction of the multigrid V-cycle. 

 

Figure 4 Flowchart of the multigrid V-cycle 

 

Figure 5 Graphical depiction of the full multigrid cycle. 
 

Figure 6 Flowchart of the full multigrid cycle 

 

Figure 7 Depiction of the mirror reflections used to determine the boundary conditions 

for the multigrid technique. 

 

Figure 8 Phase values at the boundaries resulting from the mirror reflections. The phase 

gradients at the boundary are then readily determined from the measured gradients just 

inside the boundary. 

 

Figure 9 The original phase from which the derivatives were derived is shown in Fig. 9a. 

The residual phase, resulting from reconstruction of the phase derivatives and subtraction 

from the original phase, for the Hudgin and Fried geometries are shown in Fig. 9b and 

Fig. 9c, respectively. 
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Figure 10 Phase Variance as a function of full multigrid cycles for the Hudgin and Fried 

geometries. The variance for the Hudgin geometry is denoted by the solid black line and 

for the Fried geometry by the solid gray line. 

 

Figure 11 Scaling of the multigrid algorithm as a function of sub-aperture number along a 

side. 

 

Figure A1 Two of the more common geometries used in wave-front reconstruction. The 

Hudgin geometry is displayed on the left and the Fried geometry on the right. 
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